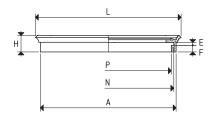
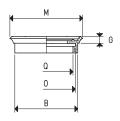


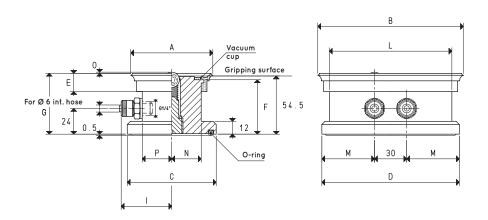
RECTANGULAR VACUUM CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT


These cups represent a true mobile clamping system. They are composed of:


 - A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.

- A standard rectangular flat cup which is cold fitted onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection. The detection of vacuum, for gripping and releasing the support, can be made via three-way vacuum valves or solenoid valves.

All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.



SPARE VACUUM CUPS

Item	Force Kg	Volume cm ³	A	В	E	F	G	Н	L	М	N	0	Р	Q	Weight g
01 40 75 *	6.7	9.2	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19	15.6
01 120 90 *	24.0	42.9	107	78	3	7.5	7.5	17.5	117	87	102	73	97	68	38.8
01 150 75 *	25.0	43.5	137	62	3	7.5	7.5	16.5	147	72	132	57	127	52	41.2

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone

VACUUM CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

Item	Force Kg	Α	В	С	D	E	F	G	I	L	M	N	0	Р	Vacuum cup item	O-ring item	Weight Kg
18 40 75 *	6.7	41	76	48	83	16.0	51	56.5	41.5	55	26.5	15.0	2	21.0	01 40 75	00 16 09	0.352
18 120 90 *	24.0	90	120	98	128	17.5	50	57.0	56.0	102	49.0	35.0	1	35.0	01 120 90	00 16 10	1.224
18 150 75 *	25.0	75	150	83	144	16.5	50	57.0	48.0	130	57.0	27.5	1	27.5	01 150 75	00 16 10	1.194

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$